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Siebenmann C, Robach P, Lundby C. Regulation of blood volume in low-
landers exposed to high altitude. J Appl Physiol 123: 957–966, 2017. First
published June 1, 2017; doi:10.1152/japplphysiol.00118.2017.—Humans ascend-
ing to high altitude (HA) experience a reduction in arterial oxyhemoglobin
saturation and, as a result, arterial O2 content (CaO2

). As HA exposure extends, this
reduction in CaO2

is counteracted by an increase in arterial hemoglobin concentra-
tion. Initially, hemoconcentration is exclusively related to a reduction in plasma
volume (PV), whereas after several weeks a progressive expansion in total red
blood cell volume (RCV) contributes, although often to a modest extent. Since the
decrease in PV is more rapid and usually more pronounced than the expansion in
RCV, at least during the first weeks of exposure, a reduction in circulating blood
volume is common at HA. Although the regulation of hematological responses to
HA has been investigated for decades, it remains incompletely understood. This is
not only related to the large number of mechanisms that could be involved and the
complexity of their interplay but also to the difficulty of conducting comprehensive
experiments in the often secluded HA environment. In this review, we present our
understanding of the kinetics, the mechanisms and the physiological relevance of
the HA-induced reduction in PV and expansion in RCV.
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HIGH ALTITUDE (HA) can constitute a hostile and inaccessible
environment with cold temperatures, dry air, and increased
solar radiation. The cardinal challenge for humans is, however,
the progressive decrease in barometric pressure and hence
atmospheric O2 partial pressure (PO2) with increasing altitude,
which despite compensatory increases in pulmonary ventila-
tion leads to a reduction in alveolar PO2 (99). Since O2

diffusion from the alveoli into the pulmonary capillaries is
driven by the PO2 gradient, the lower alveolar PO2 translates
into a reduction in arterial PO2. Due the sigmoidal shape of the
oxyhemoglobin saturation curve, the reductions in arterial O2

saturation (SaO2
) and hence arterial O2 content (CaO2

) arising
from decreases in arterial PO2 to levels �60 mmHg are mild,
although they can already affect aerobic exercise capacity
(100). At altitudes exceeding ~3,000 m, arterial PO2 reaches the
steeply descending portion of the oxyhemoglobin saturation
curve so that more substantial reductions in SaO2

and CaO2
occur (19). During acute HA exposure, a compensatory in-
crease in cardiac output is hence required in addition to the
higher pulmonary ventilation for a given systemic O2 delivery
(96). However, as exposure extends, different acclimatization
processes restore CaO2

to levels that often surpass sea level

(SL) values and cardiac output at rest and at a given exercise
workload normalizes (51). The main component responsible
for restoring CaO2

is an increase in arterial hemoglobin con-
centration ([Hb]), which stems from a reduction in plasma
volume (PV) and, often to a lesser extent, from an increase in
total red blood cell volume (RCV) (83). As the magnitude of
the reduction in PV usually exceeds that of the increase in
RCV, at least during the first weeks at HA, a reduction in total
blood volume (BV) occurs (1, 35, 78, 83).

The interest in the effects of HA on intravascular volumes is
not limited to environmental physiology. Since chronic hyp-
oxia is a feature of diseases such as anemia or chronic obstruc-
tive pulmonary disease, the resulting changes in intravascular
volumes and their physiological consequences are relevant
from a clinical perspective. In addition, the popularity of
altitude training as a potential mean to increase RCV and
thereby aerobic endurance performance (29) fuels an ongoing
interest in the erythropoietic effect of HA. In this review, we
summarize our understanding of the time course, the mecha-
nisms, and the physiological relevance of the reduction in PV
and increase in RCV at HA. We focus on studies exposing
healthy human lowlanders to continuous HA/hypoxia without
concomitant exercise training. The reason for the latter is that
exercise training may affect both PV and RCV (81) so that the
effect of HA per se is difficult to isolate. Similarly, given the
acute effects of exercise on PV as well as autonomic and
humoral control, we focus on observations made at rest.
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The large majority of subjects in the presented studies were
males, and it needs to be considered whether the findings can
be expanded to females. In support, a recent study reported
similar increases in RCV in males and females exposed to
5,260 m (79). Furthermore, although a blunted RCV expansion
could be expected in females due to lower iron availability, no
correlation was found between iron availability and RCV
expansion in women exposed to 4,300 m (36). With regards to
the reduction in PV, a recent meta-analysis detected no differ-
ences between males and females throughout the first week of
exposure to various altitudes (8). Another consideration is that
in most studies subjects were exposed to a constant altitude. In
contrast, mountaineering expeditions involve progressively in-
creasing altitude, where each new ascent may again offset O2

homeostasis so that larger intravascular volume adaptations
might occur. These speculations are supported by the pro-
nounced PV reduction and RCV expansion observed during
progressive decompression to the simulated altitude of the
summit of Mt. Everest (77).

Reduction in PV

While the erythropoietic effect of HA is widely appreciated,
knowledge and understanding of the reduction in PV seem
limited to researchers with a specific interest in HA physiol-
ogy. As outlined below, this uneven awareness contrasts the
often greater relevance of the reduction in PV for the restora-
tion of CaO2

.
Time course and magnitude of the PV reduction. Figure 1A

summarizes 21 studies monitoring changes in PV at altitudes
ranging from 2,900 to 5,000 m (1, 26, 32, 36, 37, 39, 44, 46,
50, 55, 62, 70, 74, 77, 78, 83, 86, 87, 89, 92, 105). It is evident
that the PV reduction commences early during HA exposure.
Indeed, PV reductions of �10% can already occur within the
first 24 h at ~4,000 m (8, 36, 50). Figure 1A furthermore
illustrates that PV decreases steeply throughout the first 1–2
wk, where after it plateaus 10–30% below initial levels. Fi-
nally, Fig. 1A supports earlier reviews claiming that the final
magnitude of the reduction in PV depends of the severity of
HA (7, 8, 81). Since the rate of the initial, rapid decrease in PV
appears similar across altitudes, the larger final reduction at
higher altitudes may be primarily explained by a later plateau-
ing. Whether the reduction in PV persists throughout HA
sojourns exceeding 1 mo is barely explored. In 10 lowlanders
exposed to 4,540 m (74), PV was reduced by ~20% after the
first month, where after it slowly recovered, potentially in
response to progressive RCV expansion, reaching initial levels
after 1 yr. This is in contrast to observations made at higher
altitudes (4,650 – 5800 m), where the initial reduction in PV
changed little throughout 33 wk (71).

Figure 1B illustrates the decrease in BV that arises from the
reduction in PV (1, 20, 32, 46, 50, 55, 62, 70, 74, 77, 78, 83,
87, 89, 92, 105), which, as expected, is also more pronounced
at higher altitude. In the majority of subjects BV was reduced
for about 3 wk, where after it often normalized or even
increased beyond initial levels. It should, however, be noted
that the data points illustrating notable BV increases stem from
very early studies (20, 62, 74, 89), some of which failed to
detect a reduction in PV at HA (74, 89). Based on more recent
data (70, 77–79, 83), we would expect BV to recover more
slowly at HA than suggested by Fig. 1B.

The minimal altitude inducing reductions in PV is unclear.
Studies determining PV changes at altitudes �2,500 m usually
include athletes, where variations in PV may reflect changes in
training routine (31). One exception is a study exposing seven
normal individuals for 10 days to 1,850 m, which did not
reduce PV (94). Further insights can be obtained from varia-
tions in hematocrit and/or [Hb] as these may serve as markers
for changes in PV throughout the first 4 days at HA, where
RCV is unlikely to increase (see below). No changes in
hematocrit or [Hb] were noted in 15 subjects exposed for 48 h
to 1,700 m (103), whereas an increase was observed at 2,210 m
(10). Keeping individual variability in mind, these observations
support that an altitude of ~2,000 m represents the threshold
above which reductions in PV occur if 1) altitude is well
tolerated (see Mechanisms of the PV reduction), 2) exposure
time is sufficient, and 3) no significant increase in physical
activity occurs.

Upon return from HA, PV recovers rapidly, reaching initial
levels within the first week after descent from high (78, 83) or
even extreme altitude (77).

Mechanisms of the PV reduction. Reductions in PV occur
when body water loss exceeds intake and/or when intravascular

Fig. 1. Changes in plasma (A) and total blood volume (B) throughout exposure
to different altitudes. A: data from 21 peer-reviewed articles (see text for
references). All studies were conducted at fixed altitude except for the
following: In 2 studies (32, 105), 1 night was spent at 1,950 m before ascent
to the final altitude of 4,300 m. In another study ascent to the final altitude of
3,350 m took 4 days (89). Finally, in one study subjects were exposed to a
progressive ascent to 6,000 m over the course of 16 days and we used a
time-weighted average (5,000 m) to present that data point (77). B: data from
16 peer-reviewed articles (see text for references). All studies were conducted
at fixed altitude with the same exceptions as in A. Small, middle-sized and
large data points illustrate results collected in 1–3, 4–7, and 8–10 subjects,
respectively. Points connected by straight lines represent the weighted average
for the two altitude categories calculated over 1–5, 6–10, 11–15, 16–20, and
21–30 days, respectively. In B, no weighted average is presented for 21–30
days at 4,000–5,000 m due to the limited available data.
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fluid is shifted to the extravascular compartment. Since total
body water content (TBW) decreases in the first but not in the
latter situation, TBW may serve as a marker to distinguish
between these two pathways, although the PV loss at HA is
usually �1 liter (see Fig. 1A), which constitutes only ~2% of
TBW and may be hard to detect. During mountaineering and/or
trekking expeditions, strenuous exercise, limited access to
drinking water, or dietary restrictions as well as digestive
disorders may lead to reductions in TBW so that the effect of
hypoxia is difficult to isolate. At research stations that allow
maintaining habitual fluid/food intake and physical activity, a
decrease in TBW has in some (46, 55, 88, 101) but not in all
cases (33, 57, 82, 102) been observed, suggesting that a
mismatch between water uptake and water loss can occur as a
result of hypoxia per se. Hypoxia may reduce voluntary water
uptake by blunting the sensation of thirst as suggested by
animal experiments (48). Reductions in voluntary water con-
sumption in humans exposed to increasing simulated altitude,
however, closely reflected reductions in water loss, arguing
against blunted sensation of thirst (101). Water loss may
somewhat increase at HA due to the higher respiratory fluid
loss resulting from the dry air and the enhanced pulmonary
ventilation at rest and particularly during exercise. Neverthe-
less, the main component of TBW loss at HA is increased
diuresis (93, 109), which may be governed by several hor-
mones: a variety of studies have reported a decrease in circu-
lating aldosterone starting during the first hours of HA/hypoxic
exposure (15, 60) and persisting throughout several days (42,
63, 83) or even weeks (83, 109), although the latter is not a
universal finding (63, 78). This decrease in aldosterone may
not only reflect reduced renin activity (42, 78, 83, 109) but also
diminished availability of angiotensin-converting enzyme (63)
or a direct effect of hypoxia on aldosterone secreting cells in
the adrenal cortex (72). In fact, the effect of HA on renin is
somewhat controversial, since renin activity has been reported
to increase (66), decrease (60), or remain unchanged (15, 22)
during the first hours exposure, whereas a reduction is common
after more than 1 day (42, 78, 83, 109). The mechanisms
reducing renin activity at HA are unclear but increased circu-
lating erythropoietin likely contributes (67). Conversely, renin
activity is presumably stimulated at HA by increased sympa-
thetic activity, so that the net response may depend on the
balance between the renin suppressing mechanism and sympa-
thoactivation. Interestingly, the above-mentioned studies re-
porting increased or unchanged renin activity (15, 22, 66) were
conducted at altitudes higher than those were renin activity
decreased (42, 78, 83, 109), so that sympathoactivation was
likely more pronounced. Unchanged or even increased renin
activity might be characteristic for rapid ascent to severe HA
and the associated development of acute mountain sickness,
which often manifests in individuals who do not experience
diuresis (57). Conversely, withdrawal of the renin-angiotensin-
aldosterone axis presumably facilitates HA diuresis if sufficient
time for acclimatization is provided. Atrial natriuretic peptide
(ANP) has been observed to increase in acute hypoxia, sup-
porting that it is involved in the regulation of diuresis (22, 97).
This ANP response could be related to a direct effect of
hypoxia on the heart as indicated by in vitro experiments (6).
Alternatively, hypoxia-induced sympathoactivation (34) may
augment central blood volume through constriction of periph-
eral capacitance vessels, which could increase cardiac preload

and hence ANP release. This is supported by a close correla-
tion between the hypoxia-induced increases in arterial pressure
and circulating ANP (22). After more extended HA exposure
(3–4 days), a reduction in circulating ANP below normal
levels occurs that persists throughout week-long exposure (83,
109). Reduced ANP during extended HA exposure may reflect
the diminished end-diastolic volume of the heart (91), which is
likely a consequence of the reduced PV (84). Increased ANP
may hence contribute to the rapid decrease in PV in the initial
phase of HA exposure, whereas reduced ANP could, at least in
part, explain why PV eventually plateaus despite persisting
withdrawal of the renin-angiotensin-aldosterone axis. With
regards to antidiuretic hormone (ADH), an increase (18, 57), a
decrease (14, 57), or no change (14) has all been observed
throughout the first hours of exposure to HA/hypoxia. The
observations that ADH decreases during acute exposure to
moderate but not severe hypoxia (14), as well as that a decrease
occurs in subjects that tolerate hypoxia well, whereas subjects
developing acute mountain sickness present with an increase
(57), supports that ADH, similar to the renin-angiotensin-
aldosterone axis, decreases and promotes diuresis only if the
ascent to HA is not too rapid.

Intriguingly, the role of all these hormones has been some-
what challenged by a study that did not detect a correlation
between the HA-induced hormonal and diuretic responses (93).
Since the diuretic response, however, correlated with the sen-
sitivity of the chemoreflex, the authors proposed that hypoxic
chemoreflex activation may trigger diuresis either through a
direct neuronal pathway to the kidneys or through an unknown
diuretic factor. To make the story even more complicated,
hypoxia-induced increases in pulmonary ventilation can induce
diuresis in itself as well as by promoting hypocapnia, which
enhances renal excretion of bicarbonate and hence fluid (41).
In that study, 90 min of hypoxia increased urine flow by 229%,
whereas isocapnic hyperpnea and isocapnic hypoxia increased
urine flow by 86 and 129%, respectively. The difference
between these two responses may reflect the isolated effect of
hypoxemia, which would account for merely about one-fifth
(43% out of 229%) of the increase in urine flow seen during
poikilocapnic hypoxia.

As indicated earlier, and in contrast to the studies above,
some investigators have observed maintained or even increased
TBW at HA (33, 57, 82, 102). While in most cases this
reflected acute mountain sickness-related fluid retention (33,
57, 102), Sawka et al. (82) observed a maintained TBW in
individuals that tolerated HA well. In that study, PV decreased
secondary to transvascular leakage of plasma proteins leading
to oncotically driven redistribution of intravascular fluid into
the extravascular compartment. An elevated capillary permea-
bility for albumin has indeed been observed during early HA
exposure (39), although this is not a universal finding (53).
Increased vascular permeability could result from the systemic
inflammatory response to hypoxia that may occur even in
subjects that tolerate the exposure well (49, 52). Arguing
against transvascular protein leakage as a mechanism for the
reduction in PV at HA are studies, in which total circulating
protein mass remained unchanged when the reduction in PV
occurred, so that plasma protein concentration (36, 83) and
oncotic pressure (36) increased. An explanation for the con-
flicting outcomes could be that the subjects in the study by
Sawka et al. (82) participated in strenuous mountaineering
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training. The physical exercise may have activated the renin-
angiotensin-aldosterone and ADH systems (16), hence requir-
ing the recruitment of an alternative mechanism to reduce PV.

Since reductions in physical activity can facilitate PV con-
traction, confinement to research facilities may contribute to
the decrease in PV at HA. Nevertheless, this potential contri-
bution is likely minor since a recent meta-analysis reported a
similar or even more pronounced PV reduction than that
presented in Fig. 1A in subjects who maintained physical
activity at HA by exercise testing, walking and cycling (8).

Taken together, the mechanism facilitating the reduction in
PV at HA seems multifactorial and may depend on water
availability, altitude tolerance, physical activity, and poten-
tially many other factors. It has to be emphasized, however,
that our current understanding is almost exclusively based on
correlative evidence and that mechanistic interventions to
quantify the individual contributions of the proposed mecha-
nisms are lacking.

Physiological consequences of the PV reduction. PV reduc-
tion constitutes a rapid mechanism to increase [Hb] and hence
CaO2

at HA. We have recently observed that the ~10% decrease
in CaO2

associated with exposure to 3,454 m was restored
within only 3 days, which was to ~85% related to the reduction
in PV (83). Even after 3 wk of exposure, where SaO2

was
increased by ~4% and RCV had expanded by 4.5%, PV
reduction still accounted for 55% of the increase CaO2

com-
pared with acute exposure. The importance of PV reduction for
HA tolerance is highlighted by the aforementioned correlation
between fluid retention and acute mountain sickness (57).

Nevertheless, the reduction in PV might also have negative
consequences. The resulting decrease in BV might attenuate
blood flow to the skin and hence impair thermoregulatory
capacity during exercise in hot conditions. Furthermore, the
reduced BV contributes (although to a small extent) to the
persistent activation of the sympathetic nervous system at HA
(38), presumably by diminishing cardiac stroke volume and
hence arterial baroreflex activation (84). The elevated sympa-
thetic nervous tone could negatively affect exercise tolerance
by increasing the contribution of anaerobic metabolism (107)
and the perception of effort (80). Restoration of PV at HA by
Dextran infusion indeed tended to increase stroke volume and
decrease circulating norepinephrine during submaximal exer-
cise, although these effects did not reach statistical significance
(13). During maximal exercise at HA, the impact of the
reduced PV is controversial since PV expansion improved
performance in one (77) but not in another study (13). A
further potentially adverse effect of the reduced PV (and, at
some point, the larger RCV) could be an increase in blood
viscosity and hence cardiac afterload (69). Nevertheless, this is
not supported by the aforementioned study (13), where mean
arterial pressure during exercise at HA was unaffected by
hemodilution. Taken together, although the reduction in PV
might theoretically have negative effects on exercise capacity,
there is at present no solid evidence for this.

Expansion of RCV

A clear increase in RCV was detected almost a century ago
in lowlanders residing for several weeks at 3,350 m (89), and
the erythropoietic effect of HA exposure has subsequently been
confirmed on numerous occasions. Nevertheless, controversy

persists regarding the “dose” of HA required to robustly
increase RCV. This controversy is fueled by some recent
altitude training studies reporting increases in RCV or (depend-
ing on the measurement method) total hemoglobin mass
(Hbmass) considerably outweighing those in classical HA stud-
ies. Indeed, while a review of classical HA studies concluded
that “studies of lowlanders acclimatizing for up to 3 wk at
elevations below 4,000 m consistently fail to demonstrate
altered erythrocyte volume” (81), a meta-analysis concluded
that only 2 wk of altitude training (live high-train low or live
high-train high), including exposure to altitudes of 2,500–
3,000 m, “will quite likely increase Hbmass” (29). A potential
explanation for this controversy could be that rigorous endur-
ance training enhances the erythropoietic effect of HA. Nev-
ertheless, since the scope of this review is the effect of HA per
se, studies involving concomitant endurance training are ex-
cluded unless otherwise noted.

Time course and magnitude of the RCV expansion. Studies
determining changes in RCV and/or Hbmass at HA usually
include too few measurement points for a close assessment of
their time course. To overcome this, we measured Hbmass of
nine normally trained lowlanders on every fourth day of a 4 wk
sojourn at 3,454 m (83) and observed that expansion followed
a sigmoidal shape, with a notable onset after 12 days and a
plateau after 20–24 days. The delayed onset likely reflected the
time required for the formation of new erythrocytes in response
to the erythropoietic stimulus (104). The final increase in
Hbmass was 5.3 � 3.0%, but individual results ranged from 2.5
to 11.1%, which should be kept in mind when applying these
findings to a general population. Furthermore, since both the
rate and magnitude of Hbmass expansion depend on the severity
of HA (73), observations made at 3,454 m are not representa-
tive for other altitudes. To obtain more generalizable results,
we have conducted a meta-analysis of 66 papers reporting
intravascular volume and/or Hbmass changes at HA in a total of
447 subjects (73) (Fig. 2). In this meta-analysis we did not

Fig. 2. Total red blood cell volume expansion throughout exposure to different
altitudes. The figure is modified from Rasmussen and colleagues (73) and
presents the data from 66 peer-reviewed articles with a total of 447 subjects.
The data are distributed into altitude and exposure quartiles to yield a similar
number of subjects in each data point. Data are weighted log-response ratios
with error bars indicating 95% confidence intervals. Reference lines for a 0, 5,
10, 15, and 20% increase are given for simplicity.
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observe a significant effect of concomitant exercise so that
altitude training studies were included. The meta-analysis
yielded that the average increase rate in RCV across all
altitudes is ~50 ml/wk, which corresponds to the estimated
maximal rate of erythropoiesis that recombinant erythropoietin
treatment facilitates in healthy individuals (81). This average
increase rate was associated with a tremendous standard devi-
ation (�240 ml/wk), which could be explained as follows: first,
it presumably reflects the interindividual variability in the
erythropoietic response to HA. For instance, one included
study reported an expansion of RCV throughout the first 18
days at 4,300 m that was approximately four times higher than
the average rate (105), although the high measurement error in
that study might have contributed to this extreme increase.
Second, stratification by exposure time indicated that the ex-
pansion rate is slower over the first 10 days than over the first
28 days, which is line with the sigmoidal response curve
mentioned above (83). Finally, categorization of the data ac-
cording to the severity of HA illustrated that the expansion rate
of RCV increases with the severity of HA (see Fig. 2). Indeed,
in a recent study conducting repeated measurements of Hbmass

at 5,260 m (79), a much more rapid expansion than in our study
at 3,454 m (83) was observed. Of note, the erythropoietic rate
observed at 5,260 m (79) also exceeded that associated with
erythropoietin treatment (81), which supports that other factors
than erythropoietin might contribute to the erythropoietic re-
sponse to HA (see below).

Evaluating the final magnitude of the increase in RCV
requires that measurements are obtained after a plateau has
been reached. Figure 2 supports that a plateau is reached within
4 wk of exposure to �4,300 m, whereas longer time may be
required at higher altitudes. Indeed, studies conducted �4,500 m
reported ongoing RCV expansion even after 160 days (71, 74).
The reason for this maintained erythropoiesis at higher altitudes is
unclear, since even at 5,260 m CaO2

surpassed SL values within 1
mo (38). Potentially, the more pronounced and persisting reduc-
tion in arterial PO2 facilitate longer lasting erythropoiesis (see
Mechanisms of the RCV expansion).

After descent from HA, RCV rapidly returns to initial
values. For instance, the 5.3% increase in Hbmass associated
with 4 wk at 3,454 m reverted within 2 wk after descent (83),
whereas the 7.6% increase that developed during 16 days at
5,260 m even reverted within 1 wk (79). Whether the more
pronounced polycythemia that may occur during more ex-
tended exposure to severe HA persists longer is unknown.

Mechanisms of the RCV expansion. In comparison to the
regulation of PV at HA, the mechanism underlying the expan-
sion in RCV seems straightforward, at least at first sight. Upon
ascent to HA, the reduced arterial oxygenation in combination
with an unchanged (28) or even decreased (68) renal blood
flow diminishes renal O2 delivery. The consequent reduction in
renal tissue PO2 facilitates the stabilization of the hypoxia-
inducible factor 2 system in peritubular cells, which triggers
the release of erythropoietin (47). As a result, circulating
erythropoietin starts to increase within the first 2 h of hypoxic
exposure (54). The magnitude of the increase in erythropoietin
seems to depend on the severity of hypoxia but is subject to
massive interindividual variability (28). Although other or-
gans, most importantly the liver, possess the ability to secret
erythropoietin, the circulating erythropoietin at HA is predom-

inantly of renal origin (58). Erythropoietin then accelerates
erythropoietic activity in the bone marrow, resulting in higher
circulating reticulocyte levels after 2–3 days (83). Circulating
erythropoietin reaches a peak after ~4 days at HA, whereafter
it returns to levels slightly above normal (9, 83). This response
may reflect reductions in renal tissue PO2, which are presum-
ably most pronounced throughout the first days at HA, i.e.,
before ventilatory acclimatization and, most importantly, the
reduction in PV restore CaO2

. Why erythropoietin remains
mildly elevated thereafter is not clear, but it indicates that the
reduced CaO2

is not the only trigger for renal erythropoietin
release. This is further illustrated by the finding that autologous
blood transfusion attenuated the reduction in CaO2

but not the
increase in erythropoietin resulting from ascent to 4,300 m
(82). Ongoing renal erythropoietin release after restoration of
CaO2

may reflect that renal PO2 remains somewhat attenuated
due to the persisting reduction in arterial PO2 (12, 85, 105).
Furthermore, the reduction in BV that arises from the decrease
in PV (see Fig. 1B) may reduce central venous pressure in the
upright body position, which can stimulate renal erythropoietin
release independent of O2 availability (64). Since the link
between the increases in erythropoietin and RCV at HA is so
obvious, potential other mechanisms have received little atten-
tion. However, HA exposure facilitates other autonomic and
humoral responses that might accelerate erythropoiesis. Sym-
pathetic activity is chronically increased at HA, even after
restoration of CaO2

(38), and the elevated catecholamines levels
(61) might activate erythropoietic progenitors in the bone
marrow through �-adrenergic transmission (17). Nevertheless,
the increase in RCV at 4,300 m was not attenuated by �-ad-
renergic antagonism (32), arguing against a significant contri-
bution of this mechanism. Hypoxia may also lead to an in-
crease in endogenous glucocorticoids (26) and upregulation of
glucocorticoid receptors (56), which together could induce
erythropoiesis (65). Other hormones that might increase at HA
(although their responses vary greatly across studies) and
facilitate erythropoiesis include insulin (108), growth hormone
(5), and testosterone (43). Taken together, although the contri-
butions of other factors to the erythropoiesis at HA are unclear,
it may be an oversimplification to designate erythropoietin as
the sole mechanism.

Sufficient iron stores are required to support accelerated
erythropoiesis and heme synthesis. This is highlighted in ane-
mic patients treated with recombinant erythropoietin, where
adjunction of intravenous iron enhances the erythropoietic
response (59). Accordingly, low iron stores could be a limiting
factor for erythropoiesis at HA. This is supported by a retro-
spective analysis indicating that iron supplementation during
moderate HA exposure may enhance Hbmass production in
athletes with low prealtitude iron stores (30). In contrast,
other studies have shown that 1) non-iron-supplemented
women presenting with low initial ferritin levels increase
Hbmass at HA (79), and 2) iron supplementation does not
boost the Hbmass response to moderate HA (27). Accord-
ingly, further prospective and controlled studies are required
for a full understanding of the contribution of iron avail-
ability on RCV expansion at HA.

Similarly to PV, RCV can decrease in response to reductions
in physical activity so that confinement to research facilities
might counteract the erythropoietic response to HA. Neverthe-
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less, in our meta-analysis (73), the RCV response to HA was
unchanged by exercise training arguing against a major effect
of changes in physical activity on the RCV response described
above.

The regulation of the return of RCV to initial levels after
descent from HA is subject of debate. Active downregulation
may occur through the selective destruction of newly formed
erythrocytes in a process called neocytolysis (3). The trigger
for neocytolysis could be suppression of circulating erythro-
poietin below normal levels, which may activate phagocytes to
destroy newly formed erythrocytes (2). Furthermore, erythro-
cytes formed at HA seem to have a limited antioxidant capacity
and may hence undergo apoptosis in the face of increased
levels of reactive oxygen species upon return to SL (90).
Whatever the mechanism, neocytolysis could explain why
RCV decreases despite maintained circulating reticulocyte lev-
els (75, 83). In one of these studies (83), the decrease in RCV
was accompanied by a ~65% increase in venous carboxyhe-
moglobin, which supports accelerated lysis of red blood cells
(25). Nevertheless, it should also be kept in mind that under
homeostatic conditions ~1% of the erythrocytes are phagocy-
tized and replaced every day (40). A decrease in RCV may
hence be facilitated by a modest attenuation of the reticulocyte
production rate that could be hard to detect in small subject
groups.

Physiological consequences of the RCV expansion. Com-
pared with the reduction in PV, the RCV expansion is of
surprisingly little importance for the recovery of CaO2

, at least
at altitudes up to 4,350 m, where full restoration of CaO2

occurs
before expansion of RCV takes place (78, 83). Indeed, when
RCV expansion at 3,454 m was prevented by repeated blood
withdrawal, CaO2

still surpassed SL values after 3 wk of
acclimatization (85). Finally, in another study at the same
altitude, the ~5% expansion in Hbmass resulting from 3 wk of
acclimatization contributed merely 15% to the increase in CaO2
compared with acute exposure (83). Nevertheless, the larger
increase in RCV that may occur with higher altitudes and/or
longer exposure (Fig. 2) can obviously have a greater impact
on CaO2

.
RCV is a main determinant of endurance performance at SL

(45), where RCV expansion has an ergogenic effect (24).
Accordingly, it might appear obvious that RCV expansion also
improves endurance performance at HA. Surprisingly, how-
ever, autologous erythrocyte infusion had no effect on maximal
O2 uptake (V̇O2max) on the first or ninth day at 4,300 m (106).
Similarly, reduction of RCV to SL values by isovolemic
hemodilution did not affect V̇O2max of acclimatized lowlanders
at 5,260 m (12). Interestingly, RCV expansion induced by
recombinant erythropoietin treatment enhanced V̇O2max at alti-
tudes � 3,500 m but not at 4,500 m (76), supporting an
ergogenic effect at moderate HA. During whole-body exercise
in the severe hypoxia at higher altitudes, alveolar-capillary and
capillary-muscular O2 diffusion limitation (98), blood flow
redistribution toward nonexercising tissues (11), and fatigue
originating within the central nervous system (4) may coun-
teract the ergogenic effect of an increased convective O2

transport capacity.
A negative consequence can occur if excessive erythropoi-

esis increases [Hb] to levels exceeding 21 g/dl in men or 19
g/dl in women, leading to a condition termed chronic mountain

sickness or Monge’s disease (95). Since this condition is,
however, only a concern for HA natives or individuals dwell-
ing for several years at HA, it is beyond the scope of this
review.

Interaction Between the Plasma and RCV Responses

Above, the PV reduction and RCV expansion were primarily
discussed as isolated responses, although we have pointed out
some potential interactions, namely that PV reduction may be
involved in the control of renal erythropoietin release through
its effects on CaO2

and central venous pressure, whereas eryth-
ropoietin may in turn contribute to the reduction in PV by
suppressing renin activity. Further interactions are suggested
by the critmeter theory, which holds that renal EPO production
is finely regulated by tissue PO2 in the juxtamedullary region of
the cortical labyrinth (21, 23). This PO2 can be modulated by
either changes in renal O2 consumption, fundamentally depen-
dent on tubular sodium reabsorption, or changes in renal O2

delivery (21, 23). At HA, renal O2 delivery decreases due to the
lower CaO2

. Concomitantly, the fluid regulating hormones
mediating diuresis decrease tubular sodium reabsorption,
which, based on the critmeter theory, should reduce renal O2

consumption and thereby blunt the erythropoietin response that
is triggered by the reduced CaO2

. It has also been hypothesized
that reduced renal O2 consumption induced by fluid regulating
hormones explains the return of erythropoietin toward normal
levels after a few days at HA (67). We, however, consider this
unlikely since the changes in fluid regulating hormones occur
during the first hours at HA (15, 22, 60), whereas erythropoi-
etin continues to increase for several days (9). A further
interaction that arises from the critmeter theory is that the
reduction in PV decreases glomerular filtration rate and thereby
the O2 consuming tubular sodium reabsorption (21, 23). The
lower renal V̇O2 would then augment the increase in renal
tissue PO2 that arises from the restoration of CaO2

. In that
manner, the critmeter function may indeed contribute to the
partial normalization of circulating erythropoietin. Taken to-
gether the proposed critmeter function of the kidneys is ex-
pected to blunt the initial increase in erythropoietin at HA and
contribute to the reduction of erythropoietin toward normal
levels after the reduction in PV has occurred.

Summary and Conclusions

Figure 3 summarizes the mechanisms that may contribute to
intravascular volume changes at HA. It has to be emphasized
that the isolated contributions of the different components are
difficult to quantify and that undiscovered hormonal or neural
pathways might be involved. In Fig. 4, the potential interac-
tions between the mechanisms mediating PV reduction and
RCV expansion at HA are summarized.

In conclusion, HA acclimatization facilitates a reduction in
PV over the first 1–2 wk, which is usually sufficient to restore
CaO2

. Studies investigating the mechanisms of this reduction in
PV have provided variable and often controversial results,
which could reflect the confounding influence of acute moun-
tain sickness as well as of changes, in, e.g., food and fluid
intake, physical activity, and temperature. It is hence recom-
mended for future studies to elaborate on the effect of hypoxia
per se on PV by replicating experimental conditions between
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SL and HA as far as possible. Furthermore, experimental
interventions that isolate the individual contributions of the
proposed mechanisms are warranted. With more extended HA
exposure, a progressive RCV expansion occurs, the final mag-
nitude and hence impact on CaO2

of which depend on the
severity of HA and the acclimatization time. Why this RCV
expansion occurs despite the early restoration of CaO2

remains
to be conclusively answered, but it could reflect that the
persistent reduction in arterial PO2 translates into a blunted
renal tissue PO2. Alternatively, and as illustrated in Fig. 3,
mechanisms unrelated to renal oxygenation may increase renal

erythropoietin formation and/or erythropoietic activity at HA.
Apart from elaborating on these mechanisms, future studies
should also investigate the determinants of the intraindividual
variability in the erythropoietic response to HA.
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Fig. 3. Summary of intravascular volume
changes at high altitude and potential under-
lying mechanisms. Note that the individual
contributions of these mechanisms are un-
clear and that we cannot exclude the involve-
ment of other mechanisms. Diuresis and
erythropoietin are highlighted since we con-
sider them the cardinal mechanisms underly-
ing plasma volume contraction and total red
blood cell volume expansion, respectively.
“Direct effects of hypoxia (?)” is named as
trigger for increases in glucocorticoids, insu-
lin, growth hormone (GH), and testosterone
for lack of a more specific explanation. PV,
plasma volume; RCV, total red blood cell
volume; R-A-A, renin-angiotensin-aldoste-
rone axis; ADH, antidiuretic hormone; ANP,
atrial natriuretic peptide; PCO2, CO2 tension;
PO2, O2 tension.

Fig. 4. Possible interactions between the plasma
and total red blood cell volume responses to high
altitude. Grey boxes should be used as starting
points to read the figure. Green arrows marked
with a plus symbol indicate that the response in
the next box is promoted, whereas red arrows
with a minus symbol indicate that the response
in the next box is counteracted. PV, plasma
volume; RCV, total red blood cell volume; CaO2

,
arterial O2 content; ANP, atrial natriuretic pep-
tide; ADH, antidiuretic hormone; R-A-A, renin-
angiotensin-aldosterone axis; V̇O2, oxygen up-
take; PO2, O2 tension.
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